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LETTER TO THE EDITOR 

On the equivalence of the Ising model with a vertex 
problem? 

F Y W u  
Department of Physics, Northeastern University, Boston, Massachusetts 021 15, USA and 
Department of Physics, Virginia Polytechnic Institute and State University, Blacksburg, 
Virginia 24061, USA 

Received 9 June 1980 

Abstract. The planar Ising model in an external magnetic field and with multi-spin 
interactions is shown to be equivalent to a vertex problem. The equivalence can be 
extended to higher spins and higher dimensions. 

In a recent paper Malakis (1979) reported the proof of an equivalence between a certain 
staggered vertex model and a zero-field Ising model. The equivalence has since been 
extended (Malakis 1980) to a wider class of vertex problems on the square lattice. 

The purpose of this Letter is to point out that the result of Malakis (1979) is not new 
and, in fact, can be easily derived in a very general form to include the Ising model with 
non-zero magnetic field as well as other lattices. It can also be extended to higher spins 
and higher dimensions. In view of the rather elaborate effort required in Malakis' 
proof, it appears desirable to report on this development. 

It was first noted by Wu and Lin (1975) that the square lattice Ising model in a 
non-zero magnetic field is reducible to a staggered vertex model. This equivalence, of 
which the result of Malakis (1979) is a special case, has also been reported in Wu (1978). 
The derivation given by Wu and Lin (1975) is very simple. We now explore its 
extensions. 

Consider an even planar graph (or lattice) G which has an even number of edges 
incident at each vertex. Examples are the square, KagomC and triangular lattices. Since 
the faces of G are bipartite, we may shade one set of the faces as shown in figure 1. 
Consider next an Ising model whose spins are located at the shaded faces of G and 
whose interactions, including external magnetic field and possibly multi-spin inter- 
actions, are decomposable into sums over the vertices of G. Specifically, let v1 . . . , (+k 
be the spins surrounding a site of G. Then the Ising Hamiltonian 2 takes the form 

Under this circumstance, we have the following equivalence: 

the Ising model (1) is equivalent to a vertex model on G. 

The proof of this equivalence, which also serves to define the vertex model, is extremely 
simple. For a given spin configuration in the Ising model, encircle the (shaded) faces 
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( a  1 ( b )  i c )  

Figure 1. Examples of even lattices G and the associated king spins. ( a )  Quartic lattices. 
( b )  Vertex model on the KagomC lattice and the Ising model on the honeycomb lattice. (c) 
Vertexmodel on the triangular lattice and an Isingmodel with 1-, 2- and 3-spin interactions. 

occupied by the '+' spins by drawing bonds along the edges (cf figure 1). This leads to a 
bond graph on G. It is clear that 2k  bond configurations can occur at a vertex of G 
surrounded by k spins. Conversely, using these 'allowed' bond configurations at each 
vertex, we can construct all possible bond graphs on G derived from the spin 
configurations. The mapping between the bond graphs and spin configurations is 
clearly one-to-one. Thus, the Ising partition function is identically that of a vertex 
model on G, provided that we take the vertex weights 

w = eXp[-f(c+l, . . . , c k ) / k T ]  for allowed configurations 

= O  otherwise. (2) 

This completes the proof. 
We now examine applications of this equivalence. For the quartic Ising model with 

nearest-neighbour interactions -J = -kTK and magnetic field -H = -kTL, the lattice 
G is also quartic (figure l(a)) and the vertex weights are 

w =exp[Kcrlcr2+L(al+a2)/2] for allowed configurations 

= O  otherwise. (3) 

Here 2 2 = 4  configurations are allowed at each vertex and z = 4  is the coordination 
number of the lattice. This is the result reported by Wu and Lin (1975). Note that the 
resulting vertex weight (3) has a staggered feature since the geometry of the vertices 
rotates 90" from sublattice to sublattice. 

Similarly, as shown in figure l(b),  a staggered vertex model on the KagomC lattice is 
equivalent to the nearest-neighbour Ising model on the honeycomb lattice. The vertex 
weight is again given by (3) where we take z = 3. Now, if the Ising spins are chosen to be 
located at the unshaded faces of the KagomC lattice, we arrive at an equivalence 
between the nearest-neighbour triangular Ising model and the staggered KagomC 
vertex model (3) with t = 6. The extension of the above considerations to anisotropic 
interactions is obvious. 

Of further interest is the fact that the vertex representation of an Ising model is not 
necessarily unique. A case of interest is the alternate representation of the triangular 
Ising net shown in figure l(c).  As seen from the figure, the lattice G is also triangular 
and has a uniform vertex weight. We can even include in the Ising model three-spin 
interactions -J3 = -kTK3 (among every three spins surrounding a vertex). For such an 
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Ising model, the equivalence now reads 

w = exp[K (u1u2 + u2u3 + u3u1) + K3u1u2u3 

+ L ( ~ l + ~ 2 + ~ 3 ) / 3 1  for allowed configurations 

= O  otherwise. (4) 
The model (4) is a special case of the 32-vertex model considered by Sacco and Wu 
(1975). In fact, only 8 of the 32 bond configurations are allowed. These configurations 
are shown in figure 2 with the associated weights. Unfortunately, the weights do not 
satisfy the solubility conditions given by Sacco and Wu (1975), and hence the model is 
not soluble. 

Figure 2. The eight allowed vertex configurations in figure l (c )  and the associated weights 
(4). Four of the configurations not shown are obtainable by 120” rotations. 

Finally, we remark that our result is valid generally for any even graph G, which does 
not have to be regular. It should also be remarked that, instead of using bond graphs, 
the vertex model can also be described by arrow configurations. The mapping of bond 
graphs into arrow configurations can be carried out in a number of ways (Lieb and Wu 
1972, Wu and Lin 1975). We shall not repeat these discussions as they are not essential 
to our result. 

In conclusion, we have shown that the king model with an external field as well as 
multi-spin interactions can be formulated as a vertex problem. The consideration can 
be extended to higher spins and higher dimensions in an obvious way. For the spin-1 
Ising model, for example, two kinds of bonds, say red and blue, are needed to encircle 
‘+l’ and ‘-1’ spins. The resulting vertex model will then include all ‘allowed’ bond 
configurations of two colours. In three dimensions, the resulting vertex model will also 
be in three dimensions and defined by planes; the vertex weights are assigned according 
to the vertex plane configurations. 
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